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Abstract We suggest a local wave function-based ab initio
correlation method for infinite periodic systems, which can
describe both the near-range as well as the long-range cor-
relation effects coherently in the same scheme. Specifically,
this work introduces a formalism which allows to describe
the long-range polarization cloud around a quasi particle in
a solid explicitly in the formalism of local wave function-
based ab initio descriptions. To this end we reformulate the
infinite lattice summation underlying the quantum chemistry
formula to second order in a closed analytic form employing
the elliptic theta function of the third kind. All formulas and
manipulations are developed explicitly in full detail and a
first numeric example demonstrates the principle idea. Good
results for the long-range polarization effects in LiH and LiF
are found in agreement with earlier estimates.

Keywords Long-range polarization cloud · Ab initio band
structure · Electron correlation · Incremental scheme

1 Introduction

The field of many body theory has been developing at high
speed in recent years.A significant amount of effort is directed
towards affordable descriptions of electronic correlation in
infinite periodic systems or large heterogeneous systems both
in the ground state and in excited states. Well established
schemes like the density functional theory (DFT) [1,2] have
seen more and more refinements, for example, by means of
the optimized effective potential method (OEP) [3], time-
dependent DFT [4], screening implementations [5], the
Wigner theory [6], or the reduced density matrix functional
theory (RDMFT) [7,8]. Other correlation schemes have been
derived, examples are the dynamical mean field theory
(DMFT) [9] or the GW approximation [10].
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Parallel to the density functional approaches wave
function-based quantum chemical methods have also been
trimmed to be applicable to large systems and finally even to
polymers and crystals. To a large extent credit is due to the
local ansatz of Fulde, Stollhoff and Horsch [11,12] as well
as the systematic development of an incremental scheme by
Stoll [13–20].As for ground-state properties the ansatz of this
local incremental scheme in combination with the coupled
cluster (CC) method turned out to be valiant in applications
to broad classes of polymers and semiconductors as well as
ionic crystals [13–22]. Extensions of this particular approach
to band structure calculations were following suit. Gräfen-
stein and Stoll presented an effective Hamiltonian obtained
from cluster approximations for group-IV-semiconductors
[23–25], which were subsequently applied successfully to
polymers as well [26–28]. Further significant advances for
the case of excited states have been reported for quantum
Monte Carlo methods (QMC) [29–32], algebraic diagram-
matic construction (ADC) [33], or the Green’s function ap-
proach [34–40].

These wave function-based methods are straightforwardly
applicable to both ground-state and excited-state calculations
alike and are amenable to systematic improvement on the
numerical accuracy by their very construction.

The general bottle-neck of steep increase of numerical
effort with system size, however, affects all wave function-
based methods alike. It is precisely this obstacle which was
overcome in earlier applications by a formulation of electron
correlations in local orbitals and a hierarchy of correlation
contributions called the incremental scheme [13,14,22–25].

Recently we demonstrated that a full Green’s function
approach with a frequency-dependent self energy can in prin-
ciple also be combined with the incremental scheme. Band
structure calculations were performed for LiH and LiF [36–
38], and a recent application to a molecule inside a molecular
junction also underlines the usefulness of such an approach
[39]. The key enabling such calculations was an approach
based on local orbitals and a real space formulation of the self
energy. A particular decomposition of energy denominators
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appearing in quantum chemical expressions led to a consid-
erable speed-up by two orders of magnitude [40].

However, one problem pertains to all these efforts, namely
the presence of a long-range polarization cloud around a quasi
particle [41]. This effect can shift band structures by some
eV and has hitherto only been estimated by parametrized
continuum approximations [23,24,36–38] in the frame of
the aforementioned local orbital-based ab initio schemes.
While the terms giving rise to the long-range polarization
of the crystal due to the presence of an extra quasi particle
are well known, the underlying infinite lattice summation
could not be performed so far, particularly in three-dimen-
sional systems. Of course, there are other methods available
to describe the long-range polarization cloud, like the ran-
dom phase approximation (RPA) [41,42], but they cannot be
combined with the description of near range correlation ef-
fects derived from our local orbital-based correlation scheme
without double counting. Due to the efficiency in describing
correlation effects locally, we would like to stick to the local
incremental scheme, while extending it to a description of
the long-range polarization cloud.

In the present work we devise a way to solve this problem.
The application of a mathematical identity allows to decom-
pose the two denominators in a perturbative expression so
as to prepare the ground for an infinite lattice summation
performed analytically. The denominator decomposition has
been applied previously in a different context and a slightly
different form to energy denominators [40,43]. The ensuing
lattice summation bears similarities with the well-established
Ewald summation technique [44,45], albeit the mathemati-
cal details differ distinctly. The main purpose of this work is
to reveal all formulas in detail and to sketch the general idea.
Along with this we also present a first numerical application
to further exemplify the procedure.

In the following section we describe the theory with the
focus on the transformation of the infinite lattice sum. In Sect.
3 numerical tests are presented together with applications to
two realistic ionic systems, LiH and LiF. Section 4 contains
our conclusions.

2 Theory

In earlier works we have designed a formulation of the Green’s
function correlation method so as to use local HF orbitals
as a starting point and then assess the correlation contribu-
tions in a full ab initio manner. This correlation method has
subsequently been combined with the so-called incremental
scheme which proved to boost efficiency tremendously as
was demonstrated in some solid-state band structure calcu-
lations [36–39].

In earlier works an effective Hamiltonian was set up in a
similar way to calculate valence band structures of semicon-
ductors and polymers [23–26,28]. Analogous schemes were
developed even earlier to determine ground-state correlation
energies of solids as well as polymers [13–18,22,27].

Common to all these efforts is that the correlation hole
around a quasi particle is described efficiently in real space by
means of a local correlation scheme based on Wannier type
HF orbitals as a starting point. While this turned out to be
very successful, one shortcoming has never been resolved,
namely the problem of the long-range polarization cloud.
This is a specific type of correlation contribution in infinitely
extended periodic systems which is not short range. Quasi
particles like extra electrons or holes cause a polarization of
the crystal, which significantly lowers the overall energy of
the system. In band structure calculations this effect was esti-
mated to shift the HF valence and conduction bands in the
order of eV into the fundamental gap. This effect has been
estimated from parametrized continuum electrostatics so far
[23–26,28,36,37].

In this work we demonstrate how the long-range polari-
zation cloud can be incorporated into the procedure in a fully
ab initio way.

We first briefly repeat the Green’s function correlation
method and a description of the incremental scheme in Sect.
2.1 and 2.2.

In Sect. 2.3 a mathematical equality is presented to over-
come the numerical obstacle of the infinite lattice summa-
tion. The quantum chemical expressions are adapted towards
this formula and numerical checks are performed in Sect. 3
together with a first application to the band structure shifts in
the LiH and LiF lattices.

2.1 The Green’s function

The starting point of our approach are localized occupied as
well as virtual HF orbitals. While we are interested in solids,
the notation is kept very general for the time being. In terms
of such orbitals a model space P and excitation space Q are
distinguished for the example of virtual states (the case of
occupied states being completely analogous) as follows: The
model space P – describing the HF level – comprises of the
(N + 1)-particle HF determinants

∣
∣η

〉

, while the correlation
space Q contains single and double excitations
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We adopt the index convention that the indices a, b, c, d
and r, s, t, u, η, µ represent occupied and virtual HF orbitals,
respectively. The idea of locality translates into a restriction
of the area from where the orbital can be chosen to one or
more contiguous spatial parts of the system, as exploited sys-
tematically in the incremental scheme to be sketched below.
It is important to note that by enlarging the size of the spatial
area thus covered, this approximation can be checked in a
systematic way for convergence.

With the above notation the Green’s function takes the
form Gηµ(t) = −i〈T [cη(0)c†

µ(t)]〉, where T is the time-
ordering operator and the brackets denote the average over
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the exact ground state. It can be obtained from Dyson’s equa-
tion as:

Gηµ(ω) = [

ω1 − F − �(ω)
]−1
ηµ

. (3)

Here the self energy �ηµ(ω) which contains the correlation
effects, has been introduced, and 1 represents the unity ma-
trix. G0

ηµ(ω) is the HF propagator
[

G0(ω)
]−1
ηµ

= ωδηµ − Fηµ.
The correlated energies are given by the poles of the Green’s
function which are numerically iteratively retrieved as the
zeros of the denominator in Eq. (3).

The construction of the self energy has been described
repeatedly [36–38]. Here we just quote the result so as to
establish the link to our later formula for the long-range
polarization cloud.

Only the retarded self energy part is discussed, the case
of the advanced part being analogous.

The space of 2-particle-1-hole states (2p1h) is spanned
by

∣
∣r, s, a

〉 = a†
r a

†
s aa

∣
∣�HF

〉

. The Hamiltonian is set up in
this basis as: [H R]rsa,r ′s ′a′ = 〈r, s, a∣

∣H − E0

∣
∣r ′, s ′, a′〉 and

is subsequently diagonalized.
Diagonalizing the matrix H R results in the eigenvectors

SR and eigenvalues λR. The retarded part of the self energy
is then constructed as

�R
ηµ(ω) =

∑

rsa;r ′s ′a′
�(rs; ηa)

[

ω1 − H R + iδ1
]−1

rsa;r ′s ′a′

�(r ′s ′; µa′)

=
∑

rsa;r ′s ′a′
�(rs; ηa)

∑

q

SR
rsa;q

1
(

ω − λR
q + iδ

)

SR
q;r ′s ′a′�(r ′s ′; µa′). (4)

� is a shorthand for �(rs; ta) = Wrsta − Wrsat , and W is
the standard two-electron integral including the spin part. If
the indices only refer to pure space orbitals, we will use V
instead of W as is done in the next section.

In an earlier work we pointed out that the ordinary Møller–
Plesset perturbation theory result (PT2) is obtained by only
retaining the Fock quantities: λR

rsa = εr + εs − εa . A com-
parison of algebraic expressions and diagrams then allowed
to establish the relation

�(PT2)
ηµ (ω = εη) = H eff,(PT2)

ηµ − Fηµ, (5)

where H eff,(PT2)
ηµ is the second-order effective Hamiltonian.

2.2 The incremental scheme

The efficiency of the procedure is derived from the application
of an incremental scheme. The task of correlating electrons
in a large system is broken down systematically to diagonal-
izations in smaller subsystems.

As a subset of the incremental scheme the unit cell serves
as the smallest unit, giving rise to one-cell increments, two-
cell increments and so forth.

An incremental description of the matrix elements �ηµ

starts with a correlation calculation, in which only excita-
tions inside one unit cell, designated to be the central one

with lattice vector 0, are allowed. This results in a contribu-
tion to the correlation effects which is labeled one-cell incre-
ment [Eq. (6)]. In a next step the calculation is repeated with
excitations being allowed in a region enlarged by one addi-
tional unit cell with real space lattice vector R1. The result of
this calculation is denoted as �0,R1 and the difference with
respect to the one-cell increment �0 then isolates the effect of
additional excitations involving this additional unit cell and
constitutes the two-cell increment as shown in Eq. (7). This
procedure can be continued to more and more unit cells. In
the end the summation Eq. (8) of all increments is the final
approximation to the self energy. In this work, we are par-
ticularly interested in the diagonal elements �ηη of the self
energy or effective Hamiltonian, since they give the overall
dispersionless shifts of the HF bands, as caused partly by the
long-range polarization cloud.


�0
ηη = �0

ηη (6)
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ηη = �0,R1

ηη − 
�0
ηη − 
�R1

ηη (7)

�ηη = 
�0
ηη +

∑

i


�0,Ri
ηη +

∑

i>j


�
0,Ri,Rj
ηη + · · · . (8)

The main idea of the incremental series (8) is to exploit mainly
the local character of correlation corrections to HF results.
This feature should manifest itself in a rapid decrease of incre-
ments both with the distance between the regions involved
and with their numbers included in the increment. This means
that only a few increments need to be calculated, yet a full
account of the near range correlations is achieved this way.
It is crucial to emphasize that the cutoff thus introduced in
the summation Eq. (8) is well controlled, since the decrease
of the incremental series can be explicitly monitored.

The shortcoming of this scheme is that the long-range
polarization cloud cannot be assessed in this way, because it
would entail an infinite lattice summation and hence infinitely
many very small increments. On the other hand, a straightfor-
ward evaluation of the self energy according to the incremen-
tal scheme would include to a very vast extent excitations,
which do not contribute to the correlation effects at all. Only
one certain class of excitation needs to be summed up to
infinity as described in the next section.

2.3 Derivation of the implicit infinite lattice summation
formulas

The kind of excitations responsible for the long-range polar-
ization are identifiable, and most recently we have found that
such contributions lead to closed forms described by elliptic
theta functions. Thus the evaluation of this type of summa-
tion can be incorporated into quantum chemistry codes in a
similar fashion as the Ewald summation, and would describe
the effects of the infinite lattice implicitly. For simplicity we
sketch the problem in one -dimension for the case of poly-
acetylene in Fig. 1. An extra charge in the central unit cell
(the one in the foreground in the figure) gives rise to local
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R

Fig. 1 Sketch of the local dipole excitations and the underlying diagrams leading to the polarization cloud

η

a

r
η

η

Fig. 2 Typical representative of a diagram adding correlations due to
the presence of an additional particle in orbital η

electron–hole excitations in the neighboring unit cells. These
local dipole excitations add up to what is known as long-range
polarization cloud and should be summed up to infinity. With
the local schemes developed so far this cannot be achieved
and has hence been taken into account by some continuum
approximation in previous applications.

In diagrammatic notation the polarization of the crystal
due to some extra charge in orbital η is described by a local
excitation from orbital a to r as indicated in Fig. 2.

When switching to spin-free orbital notation and focusing
on a closed-shell system, the diagram translates into

Hηη = 2
∑

a,r

VηaηrVηrηa

εa − εr
(9)

for the matrix element Hηη of an effective Hamiltonian or

�ηη(ω) = 2
∑

a,r

VηaηrVηrηa

ω + εa − εr − εη

(10)

for the matrix element �ηη(ω) of the self energy. The two
formulas are related by

Hηη = �ηη(ω = εη) (11)

as was discussed in previous studies [37,38]. In the following
it does not matter which case is pursued and we stick to the
effective Hamiltonian expression Eq. (9).

We now explicitly perform the sum over all unit cells to
describe local excitations from orbital a to orbital r in unit
cell R. Thus in the following the orbital summations only
refer to the central unit cell 0, while the unit cell is indicated
explicitly for each orbital index:

H∞
ηη = 2

∑

a,r∈0

∞
∑

R

Vη(0)a(R)η(0)r(R)Vη(0)r(R)η(0)a(R)

εa − εr

. (12)

Due to the degeneracy with respect to the unit cell the
energy denominator can be taken out of the lattice summa-
tion which then only runs over the two-electron integrals:

H∞
ηη = 2

∑

a,r∈0

1

εa − εr

∞
∑

R

Vη(0)a(R)η(0)r(R)Vη(0)r(R)η(0)a(R).

(13)

The index ∞ is a reminder that the lattice sums above are to be
performed over the entire lattice and will be dropped hence-
forth. Inserting the representation of each local HF orbital in
the basis set

| η > =
∑

α

Cα,η | α > (14)
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will transform the lattice sum as:
∑

R

Vη(0)a(R)η(0)r(R)Vη(0)r(R)η(0)a(R)

=
∑

αβγσ

Cα,ηCβ,aCγ,ηCσ,r

∑

α′β ′γ ′σ ′
Cα′,ηCβ ′,rCγ ′,ηCσ ′,a (15)

∑

R

Vα(0)β(R)γ (0)σ (R)Vα′(0)β ′(R)γ ′(0)σ ′(R). (16)

With the two-electron integrals written out the lattice sum
Eq. (16) takes the form:
∑

R

Vα(0)β(R)γ (0)σ (R)Vα′(0)β ′(R)γ ′(0)σ ′(R)

=
∑

R

∫

d3r1d3r2d3r3d3r4

×φα(r1)φβ(r2 − R)φγ (r1)φσ (r2 − R)

| r1 − r2 |
×φα′(r3)φβ ′(r4 − R)φγ ′(r3)φσ ′(r4 − R)

| r3 − r4 | . (17)

2.3.1 Denominator decomposition

The basic idea leading to a solution of the integral including
the infinite lattice summation is to decompose the denomina-
tors into Gaussian lobes. Since the basis functions φα are also
ultimately decomposed into Gaussian lobes, the integrals can
be performed analytically leaving us with a lattice sum over
Gaussian type functions, which we can finally transform into
special functions.

We start by representing the basis functions φα in terms
of Gaussian lobes

φα(r) =
∑

a

Da,αϕa(r − Ra,α) (18)

and

ϕa(r − Ra,α) = Aαe−ga,α(r−Ra,α)2
, (19)

where Aα is a normalization constant and the sum in Eq. (18)
runs over the primitive lobes with displacements Ra,α neces-
sary to depict a basis function in the customary way. In the
following we write for convenience:

ga := ga,α (20)

Ra := Ra,α. (21)

The two-electron integrals are commonly broken down to
the primitive Gaussian lobe level in quantum chemistry pro-
gram packages such as WANNIER [46], involving another
transformation:
∑

R

Vα(0)β(R)γ (0)σ (R)Vα′(0)β ′(R)γ ′(0)σ ′(R)

=
∑

abcd

DaαDbβDcγ Ddσ

∑

a′b′c′d ′
Da′α′Db′β ′Dc′γ ′Dd ′σ ′

×
∑

R

Va(0)b(R)c(0)d(R)Va′(0)b′(R)c′(0)d ′(R). (22)

This leaves us with the task of evaluating and summing the
product of two two-electron integrals. This part of Eq. (22)
takes the form:
∑

R

VabcdVa′b′c′d ′

=
∑

R

∫

d3r1d3r2d3r3d3r4 (23)

×ϕa(r1)ϕb(r2 − R)ϕc(r1)ϕd(r2 − R)

| r1 − r2 | (24)

×ϕa′(r3)ϕb′(r4 − R)ϕc′(r3)ϕd ′(r4 − R)

| r3 − r4 | . (25)

We now turn to the decomposition of the denominators
appearing in Eq. (24,25) according to a formula analyzed by
Hackbusch and Khoromskij [47]:

1

ρ
= h

l
∑

m=−l

f (mh)e−ρ2g(mh), (26)

where h is a suitable integration width and f, g are suitable
functions so as to make the series rapidly converge to machine
precision. In fact, we found that about 30 terms [l = 32 in Eq.
(26)] are enough to ensure satisfactory precision in all cases.
The functions f, g can be taken from Ref. [47], where exten-
sive studies concerning this decomposition are available, and
have the explicit forms:

f (ρ) = 2√
π

cos h(ρ)

1 + e− sin h(ρ)
(27)

g(ρ) := log2(1 + esin h(ρ)). (28)

A similar decomposition has been studied extensively by us
in a previous work [40]. Further studies to the numerical
accurateness of truncating expansion (26) will be presented
in Sect. 3.

With the abbreviations

f (mh) =: fm ; g(mh) =: gm (29)

the integral over one typical expression originating from term
(Eq. 24) together with the expansion (Eq. 18) takes the form
of an integral over five Gaussian lobes:

Vabcd = AaAbAcAdh
∑

m

fm

∫

d3r1d
3r2

×e−ga(r1−Ra)
2
e−gc(r1−Rc)

2
e−gb(r2−[Rb+R])2

×e−gd (r2−[Rd+R])2
e−gm(r2−r1)

2
, (30)

where R is the summation index of the original infinite lat-
tice summation. This double integral over five Gaussians is
straightforward to solve. Applying formula (Eq. 59) from
appendix A yields a single Gaussian with respect to R and
some lengthy prefactors as:

Vabcd = AaAbAcAdh
∑

m

fm

π3

g
3
2
0

e− 1
g0

[D0+DR−2Ca,c−2Qb,d−2La,b−2La,d−2Lc,b−2Lc,d], (31)
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where we used the abbreviations

g0 = (ga + gc)(gb + gd) + gm(ga + gc + gb + gd), (32)

D0 = Dc;bdgaRa
2 + Da;bdgcRc

2,

DR = Dd;acgb(Rb + R)2 + Db;acgd(Rd + R)2,

Ca,c = gagc(gb + gd + gm)RaRc,

Qb,d = gbgd(ga + gc + gm)(Rb + R)(Rd + R),

La,b = gmgagbRa(Rb + R),

La,d = gmgagdRa(Rd + R),

Lc,b = gmgcgbRc(Rb + R),

Lc,d = gmgcgdRc(Rd + R).

Furthermore the shorthand

Di;jk = gi(gj + gk) + gm(gi + gj + gk);
i, j, k ∈ {a, b, c, d} (33)

was used.
Checking the symmetry helps to make this formula plau-

sible. It should be noted thatga ,gb,gc andgd refer to Gaussian
lobe exponents of the basis set, while gm originates from the
denominator decomposition (Eqs. 26, 29).

A formula completely analogous to Eq. (30) can be imag-
ined for the term with primed indices Va′b′c′d ′ so that the lattice
sum
∑

R

VabcdVa′b′c′d ′ (34)

from Eq. (23) can finally be written as a sum over Gaussians
of R:
∑

R

VabcdVa′b′c′d ′ =
∑

m,m′
h2fmfm′J

∑

R

e−G(R+�)2
. (35)

The parameters J, G, and � are given by the quantities de-
fined in Eqs. (31,33) used to describe Vabcd together with their
primed counterparts to be imagined for Va′b′c′d ′ . The result is
stated in Eqs. (66–69) in Appendix B.

2.3.2 Lattice summation

We now turn to the lattice summation contained in Eq. (35).
For convenience we first confine the discussion to the one–
dimensional case along the x–axis, so that R = nxa and
� = �x with a taken to be the lattice constant. Eq. (35) then
takes the form

V (�x) =
∑

m,m′
h2fmfm′J

∞
∑

nx=−∞
e−G(nxa+�x)

2
. (36)

To the best of our knowledge this type of summation cannot
be identified with a special function. The problem is the shift
�x in the exponent, which is added to the summation index
nxa before the square is performed. But with one special twist
the summation can be transformed as follows.

It is important to note that the function V (�x) is transla-
tionally invariant, i.e., V (�x +nxa) = V (�x). Consequently
this function can be Fourier-transformed resulting in:

V (�x) =
∑

m,m′
h2fmfm′

J

a

√
π

G

∞
∑

kx=−∞
e− π2

a2G
kx

2

e− 2πi
a

kx�x . (37)

The latter step is decisive, since now the summation is in a
form matching a special function. In fact the elliptic theta
function of the third kind ϑ3 is defined as [41]:

ϑ3(u; q) :=
∞

∑

n=−∞
qn2

e2inu. (38)

The sum in reciprocal space can thus be expressed as
∞

∑

kx=−∞
e− π2

a2G
kx

2 − 2πi

a
kx�x = ϑ3

(
π�x

a
; e− π2

a2G

)

, (39)

and we finally resolve the lattice summation (35) as:

∑

R

VabcdVa′b′c′d ′ =
∑

m,m′
h2fmfm′

J

a

√
π

G
ϑ3

(
π�x

a
; e− π2

a2G

)

.

(40)

We also state the straightforward extension to simple cubic
three-dimensional lattices for later use in an obvious notation:
∑

R

VabcdVa′b′c′d ′ =
∑

m,m′
h2fmfm′

J

�

√
π

G
ϑ3

(
π�x

ax
; e

− π2

a2
x G

)

ϑ3

(
π�y

ay
; e

− π2

a2
y G

)

ϑ3

(
π�z

az
; e

− π2

a2
z G

)

,

(41)

where � is the volume of the unit cell in real space. Again
the parameters J, G, and � = (�x, �y, �z) are determined
by the parameters of the underlying Gaussian lobes indexed
with (a, b, c, d, a′, b′, c′, d ′) in the way put forth in Eqs. (66–
69) in Appendix B. The progress gained by this result with
respect to the original problem is that an infinite summation
in three dimensions has been changed into a brief summation
of only a few terms indexed by m, m′ from the denominator
decomposition. In this way an infinite expression has been
transformed into a feasible finite one.

For the sake of comparison with earlier estimates of the
shift caused by the long-range polarization cloud the near
range effects already accounted for in the respective ab initio
treatment have to be subtracted from the summation over the
lattice appearing in Eqs. (41) and (12). Specifically, if corre-
lation effects had been accumulated upto a certain range Rc

including unit cells in a volume ϒ , the respective vectors have
to be excluded in the infinite lattice sum. Thus the remaining
band shift γ

η

pol for band index η due to the long-range polari-
zation cloud is obtained to second-order from subtracting the
respective part from Eq. (12):

γ
η

pol := H∞
ηη − Hϒ

ηη

= 2
∑

a,r∈0

∞
∑

R

Vη(0)a(R)η(0)r(R)Vη(0)r(R)η(0)a(R)

εa − εr

−2
∑

a,r∈0

ϒ
∑

R

Vη(0)a(R)η(0)r(R)Vη(0)r(R)η(0)a(R)

εa − εr

, (42)

where in the first sum the lattice summation runs over the
infinite lattice and is performed as described in this work,
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and the second sum runs over the near range treated by the
incremental scheme as in previous works. The latter sum is
evaluated explicitly.

As a result the overall shift γ
η

pol of band η due to the long-
range polarization effects is isolated and can be compared
with previous estimates as is done in the next section.

3 Results and discussion

While the main purpose of this work is to put forth the mathe-
matical idea with all formulas worked out, we would also like
to further exemplify our ansatz with a first numerical applica-
tion. Full-scale quantum chemistry routines, however, have
not been implemented for this work so far due to the tre-
mendous programming efforts typical of ab initio codes. The
approximations presented here, however, yield very encour-
aging results and focus on demonstrating the feasibility of
the suggested implicit lattice summation in Sect. 3.2. First
some numerical checks are presented in Sect. 3.1.

3.1 Numerical checks

In this section we check the denominator decomposition (Eq.
26) by comparison with an analytic result. Specifically, in one
dimension, the expression
∑

R �=0

1

|r − R|
1

|r′ − R| (43)

converges for r = r′ = 0.Applying our method of denomina-
tor decomposition, subsequent transformation to reciprocal
space and identification with the elliptic theta function of the
third kind yields:
∑

R �=0

1

|r − R|
1

|r′ − R| →
∑

n�=0

1

n2

≈ h2
l

∑

m,m′=−l

fmfm′

√
π

gm + gm′

ϑ3(0; e
− π2

gm+gm′ ). (44)

On the other hand we know from Riemann’s Zeta function
[42] ζ(z) that
∑

n�=0

1

n2
= 2ζ(2) = π2

3
≈ 3.28987. (45)

Table. 1 summarizes the approximate results for various
summation limits l in Eq. (44). For a small value l = 16 the
error is already less than 0.2%. In the following calculations
all results were obtained with l = 32.

Instead of an infinite lattice summation one is thus left
with a double sum over a very finite number of terms only
in Eq. (41). This is the merit of the optimized denominator
decomposition described in Eqs. (26–28). Symmetry consid-
erations and numerical cutoff criteria will eventually reduce
the summation in Eq. (41) further.

Table 1 Numerical approximations of Riemann’s Zeta function
2ζ(2) ≈ 3.28987 for various summation limits l

Summation limit 1 4 8 16 32 64

Approximation 2.07754 3.05315 3.28349 3.28986 3.28987

3.2 Results for the LiH crystal

In earlier studies we have presented ab initio studies on the
band structure of LiH both with the effective Hamiltonian
method [38] as well as with the Green’s function approach
[36]. By virtue of the incremental scheme the local correla-
tion effects up to the third nearest neighbor unit cells were
taken into account in a valence double ζ (VDZ) basis set.
Thus the near range volume designated ϒ in Eq. (42) con-
tains 43 unit cells.

On the other hand the effect of the long-range polarization
cloud on the band structure was not taken into account on an
ab initio level. Instead, an electrostatic continuum approxi-
mation was used to estimate γ

η

pol defined in Eq. (42) and an
additional shift of the lowest lying conduction band by 1.0 eV
– irrespective of the basis set, i.e., assuming a complete basis
– was found.

In the following we will apply the mechanism developed
here to obtain this shift from first principles. LiH is cho-
sen for various reasons. First, it is both experimentally and
theoretically well studied. Secondly, the HF gap of 13 eV is
severely reduced by correlation effects to 5 eV, thus placing
LiH between the two prototype semiconductors diamond and
silicon. Last of all, it is well suited for pioneering ab initio
studies due to the small size of the unit cell with four elec-
trons. We take the lattice constant a from the experiment to
be 4.06 Å[50].

In order to apply our scheme of infinite lattice summa-
tion, the crystal is alternatively described as simple cubic
with eight atoms at each Bravais lattice site, rather than a fcc
lattice. The unit cell thus consists of the following ions at the
respective positions in units of a/2:

Li1 = (0, 0, 0) Li2 = (1, 0, 1)

Li3 = (1, 1, 0) Li4 = (0, 1, 1),

H1 = (0, 0, 1) H2 = (1, 0, 0)

H3 = (1, 1, 1) H4 = (0, 1, 0). (46)

The situation is sketched in Fig. 3. Starting from an ionic
picture, the 1s orbitals both at the Li and at the H are doubly
occupied. The lowest lying conduction band at the funda-
mental gap then arises from the 2s orbital of the Li cation.
In the following we identify the index η from the formulas
above with this band. The presence of this extra electron at
the site of Li1 causes a polarization of the crystal which is
basically due to polarizations of the extended, doubly occu-
pied 1s cloud of the H anions. Thus the state η in the notation
of Fig. 2 is identified with the Li 2s orbital at the origin,
and the pair a, r describes a local excitation at a hydrogen
site from the H 1s orbital (= a) to higher lying polarization
functions like 2p, 3p, 3d, etc. for orbital r . In order to arrive
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Fig. 3 Sketch of the primitive unit cell of the LiH crystal. The ions are
numbered according to the vectors in Eq. (46)

at numerical results first so as to demonstrate the proposed
method, the set-up of a full quantum chemistry ab initio code
is avoided here. Rather, we approximate the HF orbitals with
a simple representation in terms of Gaussian lobes. Apart
from the aspect of numerical savings, this might also be fea-
sible for future studies on the ground that at long distances
such an approximation might be justified. At short ranges,
the contributions had been assessed with the full ab initio
machinery, and the simple Gaussian lobe approximation in
the short-range neighborhood is subtracted from the infinite
lattice summation by hand anyway.

To proceed, we performed a solid state HF calculation
with a valence quadruple ζ (VQZ) basis using the aforemen-
tioned solid state program package WANNIER [46]. This
gives us the energies used in the denominator of Eq. (9).
Rather than using the HF Wannier-type orbitals themselves
in the transformations (Eqs. 15, 22 ), we use simple lobes
to mimic these orbitals as discussed above, thus saving the
expensive transformations. We again stress that our goal here
is to first obtain numerical results for the infinite lattice sum-
mation rather than presenting full quantum chemical ab initio
calculations.

With this in mind we evaluate the polarization diagram of
Fig. 2 with the orbital identifications as discussed previously.
The numerator in the second-order perturbation expression
is obtained from Eq. (41) with the understanding, that up to
the third nearest neighbors the real space contributions have
been evaluated and subtracted from hand according to Eq.
(42). Excitations from the H 1s to higher shell s orbitals are
not considered, since they would not polarize the hydrogen
ion. We consider excitations into 2p, 3p, 4p as well as 3d
and 4d. The results are stated for each shell in terms of a shift
γpol of the lowest conduction band (originating from the Li
2s orbital) in Table 2.

The last column repeats the result of the continuum approx-
imation [36,37] of 1.02 eV. The column labeled � states the
result of this work. We obtain a shift due to the long-range
polarization cloud of 0.76 eV or 3/4 of the continuum estima-
tion. Given the approximate description of the wavefunctions
and the fact that our formulas are perturbative results to sec-
ond order, we believe this is in very good agreement. The
assignment of the various contributions to different shells of

Table 2 Shift γpol of the lowest conduction band of LiH towards the
gap due to the long-range polarization cloud in eV

2ndshell 3rdshell 4thshell � C

γpol 0.17 0.40 0.19 0.76 1.02

Table 3 Shift γpol of the lowest conduction band of LiF towards the
gap due to the long-range polarization cloud in eV

Excitations from 2s Excitations from 2p � C

γpol 0.123 0.095 0.218 0.225

course should not be over-interpreted in light of the approx-
imations. Still we interpret the fact that the third shell seems
to give the largest contribution as an indication that the d
orbitals are not negligible in describing the polarization of
the hydrogen anion.

3.3 Results for the LiF crystal

LiF has the same geometric structure as LiH, with the exper-
imental lattice constant to be 3.990 Å[51]. In earlier works
we presented extensive studies of this system, including band
structure calculations [37,38]. We found very good agree-
ment with respect to experiment as well as other calculations
[52–54]. However, again the effects of the long-range polar-
ization cloud were replaced by a continuum approximation
and found to cause a shift of the conduction bands of 0.225 eV
[37]. We employ the same VDZ plus polarization function
basis set as in our earlier calculations [37,38], including a
d-function at the F and a p-function at the Li site. The orbi-
tal energies of the localized HF solutions are obtained with
WANNIER, the orbitals themselves are again approximated
in a simple way by their most important Gaussian lobe basis
function.

As in the previous section we consider the case of con-
duction bands. One additional electron is put into the 2s-like
orbital at the first Li cation of the central unit cell, leading to
a polarization of the F anions. This polarization is described
in the present basis set by an excitation of the occupied 2s-
and 2p-like orbitals into the virtual orbitals of the third shell.

The results are summarized in Table 3. This time, excita-
tions into the 3s-type orbitals at the F also have to be taken
into account, because an excitation from 2p to 3s leads to
polarization of the charge distribution. Overall excitations
of the 2s occupied orbitals contribute 0.123 eV, excitations
from the 2p-type orbitals contribute 0.095 eV. In view of
our approximation of the full HF wavefunctions, care has
to be taken so as not to over-interpret the details of these
findings. Nonetheless we would like to comment that the
somewhat larger contribution from the excitations of the 2s-
band with respect to 2p-excitations is peculiar at first sight.
Yet it deserves mentioning that the 2p-bands of the F anion
displayed a counterintuitive behavior with respect to correla-
tion effects in earlier calculations as well [37,38,52,53,55],
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where correlation effects were found to result in a broadening
of these bands rather than a flattening.

Overall, a shift of 0.218 eV is found, while the continuum
approximation yielded a somewhat larger guess of 0.225 eV.
So our PT2 result comes close to the estimated value. With
our calculation we thus also recover the fact that the polariza-
tion effect is much less pronounced in LiF as it is in LiH. The
reason is the unusually large polarizability of the H anion.

4 Conclusions

In conclusion we have presented a formalism which allows
to include a description of the long-range polarization cloud
into an overall local wave function-based ab initio correlation
scheme for infinitely extended periodic systems. It should be
emphasized that with this progress all parts of the correlation
effects can be assessed within the same local orbital scheme,
so that all contributions are cleanly evaluated on the same
footing with double counting avoided. While the previously
well-established local orbital-based incremental scheme was
very efficient in describing the near range polarization cloud,
it can now be extended to also account for the long-range
polarization effects for the first time.

The feasibility of the infinite lattice summation formu-
las were demonstrated in a first numerical application for
the LiH and LiF crystals and good agreement with previous
estimations was found.

We believe that this constitutes a major step ahead in the
design of a general local orbital-based ab initio scheme for
solids.
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5 A Eqs. (31, 32)

We now prove that

Vabcd = AaAbAcAdh
∑

m

fm

π3

g
3
2
0

e
(

− 1
g0

ε
)

, (47)

where the exponent ε takes the form

ε = Dc;bdgaRa
2 + Da;bdgcRc

2 + Dd;acgbRb
2

+Db;acgdRd
2 − 2gagc(gb + gd + gm)RcRa

−2gbgd(ga + gc + gm)RbRd

−2gm [Bab + Bad + Bcb + Bcd ] . (48)

We have again used the shorthand (33) for the Di;jk and

Bij = gigj RiRj; i, j ∈ {a, b, c, d}. (49)

First the integral in Eq. (30) is solved with respect to r2.
Omitting R by defining

rb := Rb + R, rd := Rd + R (50)

(for convenience of writing), this part of the integral takes
the form:

AbAd

∫

d3r2e−gb(r2−rb)2
e−gd (r2−rd)2

e−gm(r2−r1)
2
. (51)

Rearranging the exponent yields

−gb(r2 − rb)
2 − gd(r2 − rd)

2 − gm(r2 − r1)
2

= −ḡbdm(r2 − r̄bdm)2 −
×gbdrbd

2 + gbmrbm
2 + gdmrdm

2

ḡbdm

. (52)

The above abbreviations are defined as:

gij := gigj ; rij := ri − rj; i, j ∈ b, d, m (53)

ḡbdm := gb + gd + gm,

r̄bdm := gbrb + gdrd + gmrm

ḡbdm

,

and for ease of notation we have used rm := r1. The integra-
tion (Eq. 51) over the simple Gaussian indicated in Eq. (52)
then yields immediately

AbAd

(
π

ḡbdm

) 3
2

e− 1
ḡbdm

(gbdrbd
2+gbmrbm

2+gdmrdm
2)
, (54)

where the definitions

rbm := rb − r1, rdm := rd − r1 (55)

make the result a Gaussian with respect to r1. This becomes
clear in rewriting expression (Eq. 54) to finally obtain for the
integral (Eq. 51):

AbAd

∫

d3r2e−gb(r2−rb)2
e−gd (r2−rd)2

e−gm(r2−r1)
2

= AbAd

(
π

ḡbdm

) 3
2

e
− gbgd

gb+gd
rbd

2

e
− gm (gb+gd )

ḡbdm
(r1−�bd)2

(56)

with the additional shorthand

�bd := gbrb + gdrd

gb + gd

. (57)

Upon insertion in the original integral over r1 in Eq.
(30) one thus obtains another Gaussian integral with three
Gaussian lobe type functions and can thus again imply in
principle a formula of the type Eq. (56). Specifically Eq. (30)
now reads

Vabcd = AaAbAcAdh
∑

m

fm

(
π

ḡbdm

) 3
2

e− gbgd
gb+gd

rbd
2

(58)

∫

d3r1e−ga(r1−Ra)
2
e−gc(r1−Rc)

2
e
− gm (gb+gd )

ḡbdm
(r1−�bd)2

.

Applying again formula (Eq. 56) for the integral over the
three Gaussian lobes with respect to r1 in the above expres-
sion yields (in an obvious notation following the solution of
the first integral with respect to r2):

Vabcd = AaAbAcAdh
∑

m

fm

(
π

ḡbdm

) 3
2
(

π

ḡacm

) 3
2

e− gbgd
gb+gd

rbd
2

e− 1
ḡacm

(gacrac
2+gamram

2+gcmrcm
2)
, (59)
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where the abbreviations

ḡacm := ga + gc + gm(gb + gd)

ḡbdm

, (60)

gam := gagm

(gb + gm)

ḡbdm

,

gcm := gcgm

(gb + gm)

ḡbdm

,

ram := Ra − �bd,

rcm := Rc − �bd,

were used. This completes the proof of Eq. (31,32) except
that the present expression appears asymmetric in the indices
of the Gaussian lobe basis functions indexed a, b, c, d. On
the other hand in Eqs. (31,32) the identical, yet symmetric,
formula was used. To be brief here we constrain the consid-
erations to two examples, the other terms in Eqs. (31,32) can
be derived in an analogous way. We first show that

ḡacmḡbdm = g0. (61)

In fact we have

ḡacmḡbdm =
(

ga + gc + gm(gb + gd)

ḡbdm

)

(gb + gd + gm)(62)

= (gb + gd + gm) (ga + gc) + gm(gb + gd)

= (gb + gd)(ga + gc) + gm(gb + gd + ga + gc)

= g0.

The definitions (Eq. 53,60) were used and the result is indeed
g0 defined in Eq. (32). As a second example we check the
coefficient of R2

a , which is found according to Eq. (59) from

1

ḡacm

(gacrac
2 + gamram

2) = 1

ga + gc + gm

(gagc[Ra − Rc]2

+gam[Ra − �bd]2), (63)

so that the coefficient of R2
a becomes

gagc + gam

ḡacm

= (gagc + gam)ḡbdm

ḡacmḡbdm

. (64)

The denominator has just been shown to amount to the re-
quired g0 in the following of Eq. (61), and the numerator
equals
(

gagc + ga

gm(gb + gd)

ḡbdm

)

ḡbdm = gagc(gb + gd + gm)

+gagm(gb + gd)

= ga (gc(gb + gd)

+gm(gc + gb + gd))

= gaD
c;bd, (65)

and this establishes the correspondence to Eqs. (31,32) as
far as R2

a is concerned. The other terms in the exponent of
Eqs. (31,32) can be traced in analogous ways which we will
not further pursue here.

6 B Eq. (35)

Combining Eqs. (31, 32) with a corresponding expression for
Va′b′c′d ′ yields a simple Gaussian with respect to the lattice
vector R as symbolized in Eq. (35). The parameters J, G,
and � have the form:

J := AaAbAcAdAa′Ab′Ac′Ad ′
π3

ḡ
3
2
acm

π3

ḡ
3
2
bdm

×e−(E0+E′
0)e

(E1+E′
1)2

4(E2+E′
2) ,

G := E2 + E′
2, (66)

� := 1

2

E1 + E′
1

E2 + E′
2

.

The abbreviations are defined as:

E0 := Dc;bdgaRa
2 + Da;bdgcRc

2 + Dd;acgbRb
2

+Db;acgdRd
2 − 2gagc(gb + gd + gm)RaRc

−2gbgd(ga + gc + gm)RbRd

−2gm (gagbRaRb + gagdRaRd

+gcgbRcRb + gcgdRcRd) , (67)

E1 := 2gb

(

Dd;ac − gd(ga + gc + gm)
)

Rb +
2gd

(

Db;ac − gb(ga + gc + gm)
)

Rd

−2gmga(gb + gd)Ra − 2gmgc(gb + gd)Rc, (68)

E2 := Dd;acgb + Db;acgd − 2gbgd(ga + gc + gm).

Analogous definitions hold for the primed quantities referring
to the Gaussian with primed indices a′, b′, c′, and d ′.
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